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Our Motivation

• Current hash algorithms are weakened: MD5 & SHA-1

• NIST has a repertoire of newer algorithms: SHA-224, SHA-256, SHA-
384, and SHA-512 since August 2002

• In response to recent advances in the cryptanalysis of hash functions,
NIST has opened a public competition to develop a new cryptographic
hash algorithm: SHA-3

• The deadline for submission was October 31, 2008
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Our Team

• We have submitted a new hash algorithm Spectral Hash (sHash) which is 
based on the properties of the Discrete Fourier Transform and nonlinear 
transformations via data dependent permutations

• This is a collaborative work between

– Gökay Saldamlı (my Ph.D. student from OSU, 2006)
– Cevahir Demirkıran (a Ph.D. student from Barcelona, Spain)
– Megan Maguire, Carl Minden, Jacob Topper, Alex Troesch, Cody 

Walker (students from UCSB)
– myself
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Submissions

• There seem to be about 45 submissions, however, NIST has not yet
published the full list of submissions

• You can follow the excitement here:

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo

http://en.wikipedia.org/wiki/SHA-3
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sHash Building Blocks - Finite Fields

• Our hash function uses the elements of the fields GF (24) and GF (17)

• The field GF (24) is generated by the irreducible polynomial p(x) =
x4 + x3 + x2 + x + 1

• The arithmetic of the GF (17) is simply mod 17 arithmetic
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sHash Building Blocks - DFTs

• The DFTs are performed in GF (17)

• We use 4-point DFTs and 8-point DFTs

Xi = DFTd(x) :=
d−1
∑

j=0

xjω
ij
d mod 17,

where i = 0, 1, 2, . . . d − 1, and d is either 4 or 8.

• ω is the d-th root of unity in GF (17)

• For the 4-point DFTs (d = 4), we have ω4 = 4

• For the 8-point DFTs (d = 8), we have ω8 = 2

CS@UCSB - Nov 12, 2008 5



sHash Building Blocks - Nonlinearity

• We employ the inverse map in GF (24) which has good nonlinearity

• We use a nonlinear system of equations by selecting variables from a
permutation table generated using data dependent permutations

• The general structure of sHash is an augmented Merkle-Damgard scheme
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Augmented Merkle-Damgard Scheme
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512-bit Message Block mi

• s-prism: Break the message into 128 4-bit blocks represented as a
4 × 4 × 8 prism

• p-prism: Create a permutation of 7-bit numbers {0, 1, . . . , 127}
represented as a 4 × 4 × 8 prism

• permutations are determined by message bits and previous rounds
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S-Prism
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P-Prism
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Compression Function

• In the beginning of each round, the s-prism holds new message chunk,
and the p-prism holds the permutation as updated by the previous round

• Compression function applies:

– Affine transformation
– Discrete Fourier transform
– Nonlinear transformation
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Affine Transform

The following affine transform is applied to each entry of the s-prism:

S(i,j,k) := α(S(i,j,k))
−1 ⊕ γ,

α =









1 0 1 1
1 1 0 1
1 1 1 0
0 1 1 1









and γ =









1
1
1
0








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Discrete Fourier Transform

• After the affine transforms, we apply the 3-dimensional DFT to the
s-prism.

• The DFT is defined over the prime field GF (17), permitting transforms
of length 8 and 4 for the principle roots of unity ω8 = 2 and ω4 = 4

• In the first iteration of the row-column method (i.e. DFT through the
k-axis) one has to compute 16 different 1-dimensional 8-point DFTs

• Through the i and j axes, we need to calculate 32 different 4-point DFTs
for each axis
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3-D Discrete Fourier Transform
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Nonlinear Transformation

• At this step of the compression function, we collect and combine the
data from the s-prism and p-prism to set up a nonlinear transformation
that acts on the s-prism

• The nonlinear transformation is specifically designed to resist pre-image
attacks and related weaknesses

S(i,j,k) := (S′

(i,j,k) ⊕ P l(i,j,k))
−1 ⊕ (S′

P(i,j,k)
⊕ Ph(i,j,k))

−1 ⊕ H(i,j,k),

for all i, j = 0, 1, 2, 3 and k = 0, 1, . . . , 7.
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Rubic Rotations
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