
Spectral Hash - sHash

A SHA-3 Candidate

Gökay Saldamlı
Cevahir Demirkıran

Megan Maguire
Carl Minden
Jacob Topper
Alex Troesch
Cody Walker

Çetin Kaya Koç

University of California Santa Barbara

CS@UCSB - Nov 12, 2008



Our Motivation

• Current hash algorithms are weakened: MD5 & SHA-1

• NIST has a repertoire of newer algorithms: SHA-224, SHA-256, SHA-
384, and SHA-512 since August 2002

• In response to recent advances in the cryptanalysis of hash functions,
NIST has opened a public competition to develop a new cryptographic
hash algorithm: SHA-3

• The deadline for submission was October 31, 2008

CS@UCSB - Nov 12, 2008 1



Our Team

• We have submitted a new hash algorithm Spectral Hash (sHash) which is 
based on the properties of the Discrete Fourier Transform and nonlinear 
transformations via data dependent permutations

• This is a collaborative work between

– Gökay Saldamlı (my Ph.D. student from OSU, 2006)
– Cevahir Demirkıran (a Ph.D. student from Barcelona, Spain)
– Megan Maguire, Carl Minden, Jacob Topper, Alex Troesch, Cody 

Walker (students from UCSB)
– myself

CS@UCSB - Nov 12, 2008 2



Submissions

• There seem to be about 45 submissions, however, NIST has not yet
published the full list of submissions

• You can follow the excitement here:

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo

http://en.wikipedia.org/wiki/SHA-3

CS@UCSB - Nov 12, 2008 3



sHash Building Blocks - Finite Fields

• Our hash function uses the elements of the fields GF (24) and GF (17)

• The field GF (24) is generated by the irreducible polynomial p(x) =
x4 + x3 + x2 + x + 1

• The arithmetic of the GF (17) is simply mod 17 arithmetic

CS@UCSB - Nov 12, 2008 4



sHash Building Blocks - DFTs

• The DFTs are performed in GF (17)

• We use 4-point DFTs and 8-point DFTs

Xi = DFTd(x) :=
d−1
∑

j=0

xjω
ij
d mod 17,

where i = 0, 1, 2, . . . d − 1, and d is either 4 or 8.

• ω is the d-th root of unity in GF (17)

• For the 4-point DFTs (d = 4), we have ω4 = 4

• For the 8-point DFTs (d = 8), we have ω8 = 2

CS@UCSB - Nov 12, 2008 5



sHash Building Blocks - Nonlinearity

• We employ the inverse map in GF (24) which has good nonlinearity

• We use a nonlinear system of equations by selecting variables from a
permutation table generated using data dependent permutations

• The general structure of sHash is an augmented Merkle-Damgard scheme

CS@UCSB - Nov 12, 2008 6



Augmented Merkle-Damgard Scheme

Message

Padding

m
0

m
1

mn-2 mn-1

H

Initial Swap

Control

Bit Marking

Message

Digest

Message

M

H

P P

S S S

S

Compression Compression Compression Compression

CS@UCSB - Nov 12, 2008 7



512-bit Message Block mi

• s-prism: Break the message into 128 4-bit blocks represented as a
4 × 4 × 8 prism

• p-prism: Create a permutation of 7-bit numbers {0, 1, . . . , 127}
represented as a 4 × 4 × 8 prism

• permutations are determined by message bits and previous rounds

CS@UCSB - Nov 12, 2008 8



S-Prism

s7
s15

s23

s39 s71 s103
s103

s111
s119

s127

s126

s125

s124

s123

s122

s121

s126

s118

s117

s116

s115

s114

s113

s112

s110

s109

s108

s107

s106

s105

s104

s102

s101

s100

s99

s98

s97

s96

s127s95s63s31

s55 s87 s119
s111s79s47

s31

s30

s29

s28

s27

s26

s25

s24

s63

s62

s61

s60

s59

s58

s57

s56 s88

s89

s90

s91

s92

s93

s94

s95 s127

s126

s125

s124

s123

s122

s121

s120

k

j

i

CS@UCSB - Nov 12, 2008 9



P-Prism

7

15

23

39 71 103

103

111

119

127

126

125

124

123

122

121

126

118

117

116

115

114

113

112

110

109

108

107

106

105

104

102

101

100

99

98

97

96

127956331

55 87 119

1117947

31

30

29

28

27

26

25

24

63

62

61

60

59

58

57

56 88

89

90

91

92

93

94

95 127

126

125

124

123

122

121

120

k

j

i

CS@UCSB - Nov 12, 2008 10



Compression Function

• In the beginning of each round, the s-prism holds new message chunk,
and the p-prism holds the permutation as updated by the previous round

• Compression function applies:

– Affine transformation
– Discrete Fourier transform
– Nonlinear transformation

CS@UCSB - Nov 12, 2008 11



Affine Transform

The following affine transform is applied to each entry of the s-prism:

S(i,j,k) := α(S(i,j,k))
−1 ⊕ γ,

α =









1 0 1 1
1 1 0 1
1 1 1 0
0 1 1 1









and γ =









1
1
1
0









CS@UCSB - Nov 12, 2008 12



Discrete Fourier Transform

• After the affine transforms, we apply the 3-dimensional DFT to the
s-prism.

• The DFT is defined over the prime field GF (17), permitting transforms
of length 8 and 4 for the principle roots of unity ω8 = 2 and ω4 = 4

• In the first iteration of the row-column method (i.e. DFT through the
k-axis) one has to compute 16 different 1-dimensional 8-point DFTs

• Through the i and j axes, we need to calculate 32 different 4-point DFTs
for each axis

CS@UCSB - Nov 12, 2008 13



3-D Discrete Fourier Transform

j

j

i

i

i

k

k

k-DFT

j-DFT

i-DFT

CS@UCSB - Nov 12, 2008 14



Nonlinear Transformation

• At this step of the compression function, we collect and combine the
data from the s-prism and p-prism to set up a nonlinear transformation
that acts on the s-prism

• The nonlinear transformation is specifically designed to resist pre-image
attacks and related weaknesses

S(i,j,k) := (S′

(i,j,k) ⊕ P l(i,j,k))
−1 ⊕ (S′

P(i,j,k)
⊕ Ph(i,j,k))

−1 ⊕ H(i,j,k),

for all i, j = 0, 1, 2, 3 and k = 0, 1, . . . , 7.

CS@UCSB - Nov 12, 2008 15



Rubic Rotations

j

i

k

rot - 3

rot - 3

rot - 2

rot - 1

rot - 0

rot - 2

rot - 1

rot - 0

CS@UCSB - Nov 12, 2008 16


