Spectral Hash - sHash A SHA-3 Candidate

Gökay Sa<mark>l</mark>damlı Cevahir DemirkıranMegan Maguire Carl Minden Jacob Topper Alex Troesch Cody Walker Çetin Kaya Koç

University of California Santa Barbara

CS@UCSB - Nov 12, ²⁰⁰⁸

Our Motivation

- Current hash algorithms are weakened: MD5 & SHA-1
- NIST has ^a repertoire of newer algorithms: SHA-224, SHA-256, SHA-384, and SHA-512 since August ²⁰⁰²
- In response to recent advances in the cryptanalysis of hash functions, NIST has opened ^a public competition to develop ^a new cryptographichash algorithm: SHA-3
- The deadline for submission was October 31, ²⁰⁰⁸

Our Team

- We have submitted a new hash algorithm Spectral Hash (sHash) which is
has also the preparties of the Discrete Equator Trensform and nonlinear based on the properties of the Discrete Fourier Transform and nonlinear
transformations via data denondent narroutations transformations via data dependent permutations
- This is ^a collaborative work between
	- G¨okay Saldamlı (my Ph.D. student from OSU, 2006)
	- Cevahir Demirkıran (a Ph.D. student from Barcelona, Spain)
	- Megan Maguire, Carl Minden, Jacob Topper, Alex Troesch, Cody Walker (students from UCSB)
musclf
	- myself

Submissions

- There seem to be about ⁴⁵ submissions, however, NIST has not yet published the full list of submissions
- You can follow the excitement here:

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoohttp://en.wikipedia.org/wiki/SHA-3

sHash Building Blocks - Finite Fields

- $\bullet\,$ Our hash function uses the elements of the fields $GF(2^4)$ $^{4})$ and $GF(17)$
- The field $GF(2^4)$ $^4)$ is generated by the irreducible polynomial $p(x) = \frac{1}{2}$ $x^4+x^3+x^2+x+1$
- $\bullet\,$ The arithmetic of the $GF(17)\,$ is simply mod 17 arithmetic

sHash Building Blocks - DFTs

- $\bullet\,$ The DFTs are performed in $GF(17)$
- We use 4-point DFTs and 8-point DFTs

$$
\mathbf{X}_i = DFT_d(\mathbf{x}) := \sum_{j=0}^{d-1} \mathbf{x}_j \omega_d^{ij} \bmod 17,
$$

where $i = 0, 1, 2, \ldots d$ 1, and d is either 4 or 8 .

- \bullet ω is the d -th root of unity in $GF(17)$
- For the 4-point DFTs $(d = 4)$, we have $\omega_4 = 4$
- For the 8-point DFTs $(d = 8)$, we have $\omega_8 = 2$

sHash Building Blocks - Nonlinearity

- $\bullet\,$ We employ the inverse map in $GF(2^4)$ $^{\rm 4)}$ which has good nonlinearity
- We use ^a nonlinear system of equations by selecting variables from ^a permutation table generated using data dependent permutations
- The genera^l structure of sHash is an augmented Merkle-Damgard scheme

Augmented Merkle-Damgard Scheme

512-bit Message Block m_i

- s-prism: Break the message into ¹²⁸ 4-bit blocks represented as ^a $4 \times 4 \times 8$ prism
- p-prism: Create a permutation of 7-bit numbers $\{0, 1, \ldots, 127\}$ represented as a $4\times4\times8$ prism
- permutations are determined by message bits and previous rounds

S-Prism

P-Prism

Compression Function

- In the beginning of each round, the s-prism holds new message chunk, and the p-prism holds the permutation as updated by the previous round
- Compression function applies:
	- Affine transformation
	- Discrete Fourier transform
	- Nonlinear transformation

Affine Transform

The following affine transform is applied to each entry of the s-prism:

$$
S_{(i,j,k)} := \alpha (S_{(i,j,k)})^{-1} \oplus \gamma,
$$

$$
\alpha = \left(\begin{array}{rrr} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{array}\right) \text{ and } \gamma = \left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 0 \end{array}\right)
$$

Discrete Fourier Transform

- After the affine transforms, we apply the 3-dimensional DFT to the s-prism.
- The DFT is defined over the prime field $GF(17)$, permitting transforms of length 8 and 4 for the principle roots of unity $\omega_8=2$ and $\omega_4=4$
- In the first iteration of the row-column method (i.e. DFT through the k -axis) one has to compute 16 different 1-dimensional 8-point DFTs
- $\bullet\,$ Through the i and j axes, we need to calculate 32 different 4-point DFTs for each axis

3-D Discrete Fourier Transform

Nonlinear Transformation

- At this step of the compression function, we collect and combine the data from the s-prism and p-prism to set up ^a nonlinear transformationthat acts on the s-prism
- The nonlinear transformation is specifically designed to resist pre-image attacks and related weaknesses

$$
S_{(i,j,k)} := (S'_{(i,j,k)} \oplus Pl_{(i,j,k)})^{-1} \oplus (S'_{P_{(i,j,k)}} \oplus Ph_{(i,j,k)})^{-1} \oplus H_{(i,j,k)},
$$

for all $i,j = 0, 1, 2, 3$ and $k = 0, 1, \ldots, 7$.

Rubic Rotations

